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Influence of higher-order dispersion on modulational instability and pulse broadening
of partially incoherent light

L. Helczynski,* M. Lisak, and D. Anderson
Department of Electromagnetics, Chalmers University of Technology, SE-412 96 Go¨teborg, Sweden

~Received 3 July 2002; published 7 February 2003!

The Wigner-Moyal equation for the Wigner distribution of a partially incoherent optical wave field propa-
gating in dispersive and nonlinear media has been generalized to include the effects of both arbitrary order of
dispersion and arbitrary nonlinearity. The theory predicts partial incoherence to enhance the pulse broadening
during linear wave pulse propagation. Furthermore, an application of the theory to the modulational instability
of constant amplitude waves shows how higher-order dispersion affects the instability growth rate.
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I. INTRODUCTION

The propagation properties of optical pulses and beam
dispersive and nonlinear media have been a subject of in
sive research for more than 40 years. An inherent assump
in most of these studies is that the optical wave is coher
However, recently there has been considerable atten
both theoretical and experimental, given to the nonlin
propagation properties of partially incoherent light, see, e
Refs.@1–4#. It has been found that many of the characteris
effects associated with coherent light propagation rem
but tend to be suppressed by the partial incoherence. Th
for instance, the case with the modulational instability
continuous waves and the self-focusing collapse of tw
dimensional wave beams, where typically the threshold
tensity for the instability is increased by the partial incoh
ence; see, e.g., Refs.@5–7#. In order to describe the nonlinea
dynamics of partially coherent light, several alternati
methods of analysis have been used@1–4#. These methods
are the mutual coherence function approach@1#, the self-
consistent multimode theory@2#, the coherent density
method@3#, and the Wigner distribution function formalism
@4#. The first three methods have been shown to be equ
lent @8#. The fourth method, which will be used in the prese
work, is based on the Wigner distribution function fro
quantum mechanics, complemented by a Klimontovich s
tistical average to incorporate the coherence properties o
light, see Ref.@4# and references therein. The relation b
tween this method and the other three has not been c
However, we have recently shown@9# that the Wigner
method is completely equivalent to the mutual cohere
function approach, a result which also demonstrates the
sistency of all four methods mentioned above.

In the present work we generalize the previously form
lated Wigner formalism@4# to arbitrary dispersive order. In
particular, in Sec. II, we derive the appropriate Wign
Moyal equation determining the evolution of the Wigner d
tribution function in the presence of a nonlinearity, which
an arbitrary function of the wave intensity, and which al
includes a full expansion of the linear dispersion opera
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Two applications of the generalized Wigner-Moyal equati
describing the influence of higher-order dispersion~in fact,
third and fourth order! on partially coherent light are ana
lyzed: in Sec. III, the dispersive broadening of wave puls
and in Sec. IV, the modulational instability of constant a
plitude waves. The result of the first problem provides, a
byproduct, a generalization of a previous classical investi
tion of Marcuse@10#, which analyzes the effect of partia
incoherence in the light source on the subsequent lin
~third-order! dispersive broadening of light pulses. Concl
sions are given in Sec. V.

II. THE GENERALIZED WIGNER-MOYAL EQUATION

The classical one-dimensional nonlinear Schro¨dinger
~NLS! equation reads

i S ]c

]t
1

]v

]k

]c

]x D1
1

2

]2v

]k2

]2c

]x2
1kucu2c50. ~1!

Within the classical approach, it is assumed that the non
ear medium responds instantaneously to variations in
light intensity. This form of the NLS equation can be viewe
as corresponding to an expansion of the nonlinear disper
relationv5v(k,ucu2) to second dispersive order ink and to
lowest nonlinear order inucu2. In fact, it can be seen as th
lowest nontrivial expansion of the general evolution equat

i
]c~ t,x!

]t
5LS ucu2,

1

i

]W

]x
Dc~ t,x!, ~2!

where theL operator consists of a linear dispersion part a
a nonlinear intensity dependent part, viz.,

LS ucu2,
1

i

]W

]x
D[LLS 1

i

]W

]x
D 1LNL~ ucu2!. ~3!

The linear dispersion operatorLL corresponds to a Taylo
expansion ofv5v(k,0) around the carrier wave numbe
and can be written in compact form as follows:
©2003 The American Physical Society02-1
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LLS 1

i

]W

]x
D[ (

n51

`
1

n!

]nv

]kn
S 1

i

]W

]x
D n

5v~k!expS ]Q

]k

1

i

]W

]x
D ,

~4!

where arrows indicate the direction in which the derivativ
within the operator act. The nonlinear operator is a gen
function of the wave intensity. When the effect of part
coherence is included in the analysis, the medium can
respond on the~assumed! short time scale of the stochast
variations of the light field and will only experience the st
tistical average of the intensity denoted^ucu2&, cf. Ref. @4#.
Thus, the nonlinear operator can be written as

LNL~ t,x![G„^uc~ t,x!u2&…, ~5!

which to lowest order reduces to the Kerr nonlinear
G(x)52kx. In this work we use the approach based on
Wigner-Moyal formalism. A general review of the applic
tion of the Wigner distribution function to partially cohere
light propagation is given in Ref.@4#. This method is based
on the Wigner distribution functionr(t,x,p) that in a con-
venient way introduces the deterministic as well as the
chastic properties of the wave through the definition

r~ t,x,p!5
1

2pE2`

1`

eipj^c* ~ t,x1j/2!c~ t,x2j/2!&dj.

~6!

Equation~6! implies thatr(t,x,p) and the mutual coherenc
function ^c* (t,x1j/2)c(t,x2j/2)& are a Fourier pair, and
consequently,

^c* ~ t,x9!c~ t,x8!&5
1

2pE2`

1`

e2 ipjr~ t,x,p!dp, ~7!

where for simplicity we introduce the notationx95x1j/2,
x85x2j/2, or equivalentlyx5(x81x9)/2, j5x92x8. The
procedure for obtaining a transport equation for the Wig
distribution @given an equation for the wave amplitud
c(t,x)] has been discussed in Refs.@11,12#, but for an ad-
aptation to the present problem and for easy reference
give the main steps of the derivation. Using Eq.~2!, it is
possible to rewrite the time derivative of the coherence fu
tion and in this way obtain an equation for the Wigner fun
tion r(t,x,p). For this purpose it is convenient to use t
relations

]

]x8
5

1

2

]

]x
2

]

]j
,

]

]x9
5

1

2

]

]x
1

]

]j
, and

]

]j
→2 ip.

We multiply the correspondingly rewritten Eq.~2! by
exp(iqj)/(2p) and integrate overj. This implies that thej
shifts of thex variables can be expressed asj→2 i ]/]q. It is
instructive to write out the corresponding intermediate res
which is
02660
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2pE E H i
]

]t
2FLS t,x2

1

2i

]

]q
,p1

1

2i

]

]xD2L* S t,x

2
1

2i

]

]q
,p1

1

2i

]

]xD Gr~ t,x,p!ei j(q2p)J dpdj. ~8!

The only j dependence is now within the exponential a
integration over this variable results in a shifted delta fun
tion, d(q2p), which makes the second integration trivia
The result is

]r

]t
52 ImFLS t,x2

1

2i

]

]p
,p1

1

2i

]

]xD r~ t,x,p!G . ~9!

Finally, a Taylor series expansion of theL operator around
the two variablesx andp completes the derivation and give
the generalized Wigner-Moyal equation:

]r

]t
52 ImH L~ t,x,p!expF i

2
S ]Q

]x

]W

]p
2

]Q

]p

]W

]x
D GrJ .

~10!

In the case when the operatorL is defined according to
Eqs.~3!–~5!, the Wigner-Moyal equation becomes

]r

]t
12v expS ]Q

]k
pD sinF1

2
S ]Q

]p

]W

]x
D Gr

22G~^ucu2&!sinF1

2
S ]Q

]x

]W

]p
D Gr50. ~11!

The averaged intensitŷucu2& is expressed through Eq.~7!
taken in the same point, i.e.,

^ucu2&5
1

2pE2`

1`

r~ t,x,p!dp. ~12!

As is well known, the NLS equation, Eq.~1!, with suitably
chosen evolution variable, is often used to analyze the pro
gation of optical pulses as well as beams. In the general
tion of the linear operator part of the NLS equation, as giv
by Eq. ~4!, the coefficientsdnv/dkn are determined by the
dispersive or diffractive properties of the medium, resp
tively. The second-order term in the operatorLL corresponds
to the first dispersive order or paraxial approximation, wh
is a standard approximation in investigations of pulse a
beam dynamics and at the basis of the NLS equation. H
ever, in situations where the pulse length or the pulse wi
becomes sufficiently small, these approximations are not
ficient and the expansions must be carried to higher or
The importance of higher-order dispersive or diffractive
fects has attracted significant interest over the years, see,
Ref. @13# and references therein. We emphasize that altho
the analysis will be carried out with the ‘‘timelike’’ variable
t as evolution variable, the analysis is equally applicable
diffraction of beams in nonlinear and noninstantaneous m
dia.
2-2
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III. NONLINEAR AND DISPERSIVE PULSE BROADENING

Solutions of the Wigner-Moyal equation are difficult
obtain analytically in the general case. However, import
information aboutr(t,x,p) is contained in the moments o
the distribution, defined with respect to different weig
functionsw(x,p) as follows:

^̂ w~x,p!&&[
E E w~x,p!r dxdp

E E r dxdp

. ~13!

In particular, the moments corresponding tow(x,p)5x and
w(x,p)5x2 have a direct physical meaning, cf. Ref.@14#.
The moment̂^x&& defines the mean position and the mome
^̂ x2&& determines the width of the beam. The rms widths of
a wave pulse/beam is determined by

s25 ^̂ x2&&2 ^̂ x&&2. ~14!

The Wigner-Moyal equation can be used to obtain inform
tion about the evolution of the moments. In particular, t
second-order time derivatives of the two moments,^̂ x&& and
^̂ x2&&, yield

d2^̂ x&&

dt2
52KK (

n52

`
pn22

~n22!!

]nv

]kn

]G

]x LL ~15!

and

d2^̂ x2&&

dt2
52KK S (

n51

`
pn21

~n21!!

]nv

]kn D 2LL
22KK (

n52

`
pn22

~n22!!

]nv

]kn
x

]G

]x LL . ~16!

Consider first linear propagation, i.e.,G[0. In this case
the acceleration of the mean position vanishes, irrespec
of dispersive order, and̂̂x&& is simply given by the linear
expression̂ ^x&&5x01vt, where the initial positionx0 and
the mean velocityv are given by the initial Wigner distribu
tion function r(0,x,p), i.e., by the properties of the initia
pulse. Furthermore, it is straightforward to show that
second time derivative of̂̂x2&& is constant and that conse
quently the rms width must vary as a parabola in time, i
s25s0

2(11c1t1c2t2) with the coefficients again being de
termined by the initial wave form. In the coherent case, t
result~to arbitrary dispersive order! was derived in Ref.@15#.
To third dispersive order and for a partially coherent lig
source with Gaussian correlation function and Gauss
wave form, the corresponding result was derived by Marc
@10#. The present analysis generalizes these results to
trary dispersive order and to arbitrary properties of the w
form and the coherence properties of the light.

In order to be explicit, we consider the case when
initial profile is a Gaussian of the formc(0,x)
5AI 0exp@x2/2a21 iu(x)#. The phase functionu(x) charac-
02660
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terizes the partial coherence of the beam as expressed b
autocorrelation functionR(j), which we also assume to b
Gaussian, i.e.,

^exp$ i @u~x1j/2!2u~x2j/2!#%&[R~j!5exp~2j2/b2!.
~17!

This implies that the initial Wigner distribution is given by

r~0,x,p!5I 0

a

ApD
exp$2@x2/a21p2a2/D2#%, ~18!

whereD25114a2/b2. We now restrict the analysis to in
clude terms up to and including fourth-order dispersion. F
this case, the constantc1 is zero, since the pulse is symmetr
aroundt50 and for the constantc2, we obtain

c25Fb2
2D2

a4
1

~b3
212b2b4!D4

4a6
1

5

48

b4
2D6

a8 G , ~19!

where we have introduced the notationbn5]nv/]kn. This
result reduces to that obtained in Ref.@10# in the case where
b450 and to the result of Ref.@15# in the fully coherent
case, whenb→` andD equals unity.

The final expression for the pulse width evolution c
conveniently be written in the form

F s~ t !

s~0!G
2

5F11t2S b̄2
2

a4
1

~ b̄3
212b̄2b̄4!

4a6
1

5

48

b̄4
2

a8 D G ,

~20!

where we have introduced theb̄n5bnDn21, which charac-
terizes a fictitious effective dispersion, enhanced by the p
ence of the partial coherence. This result implies a sim
way of accounting for the effect of the partial coherence:
the previously derived expression for the pulse broaden
the ordinary dispersion coefficients are replaced by the ef
tive ones, the coherent ones being multiplied by the enhan
ment factorD, which is determined by the ratio of the rela
tive widths of the pulse amplitude and the correlati
function. For long coherence lengths, this ratio goes to z
and the enhancement factor approaches unity, i.e., the co
ent result is regained.

The presence of higher-order dispersive terms tends
enhance the broadening of coherent wave pulses@15# ~note,
however, that ifb2b4,0, fourth-order dispersion actuall
decreases the total dispersion!. The partial coherence in
creases the pulse broadening even further.

In the case of nonlinear propagation, the rms width w
vary in a nonmonotonous and nontrivial manner as a re
of the interplay between linear and nonlinear effects as
pressed by the first and second terms, respectively, on
right hand side of Eq.~16!. This variation is difficult to de-
scribe in simple analytical terms even in the fully cohere
case with only second-order dispersion and withG(x);x,
although approximate solutions have been obtained for
case@16#. The main difficulty stems from the fact that in th
nonlinear case, the right hand side of Eq.~16! is no longer
constant and that consequently the moment equations ca
2-3
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be closed. However, in nonlinear situations, the definition
pulse width in terms of the rms value may sometimes
ambiguous. As an example of this we emphasize that
pulse propagation governed by the classical NLS equat
the rms pulse width will increase towards infinity for initiall
nonsoliton pulses due to dispersive radiation being shed
This feature exists in spite of the fact that asymptotica
only stationary pulses in the form of solitons appear.

On the other hand, in the two-dimensional case withn
52 ~describing classical nonlinear diffraction of cohere
light beams!, the corresponding right hand side of Eq.~16! is
indeed constant, the rms width of the beam is still a parab
in time and the famous virial theorem describing the pos
bility of beam collapse can be formulated. A generalizat
of this situation to include effects of partial beam coheren
has recently been investigated by several authors, e.g., R
@6,7#. The results show the same qualitative picture as
cussed above; the partial incoherence tends to increas
diffraction effect, and thus a higher beam power is neede
cause self-focusing collapse.

IV. INFLUENCE OF HIGHER-ORDER DISPERSION ON
THE MODULATIONAL INSTABILITY

It has been shown that the classical modulational insta
ity of a monochromatic stationary solution of the on
dimensional NLS equation is reduced and may even be
tally suppressed for partially coherent light@4,5#. The
presently extended Wigner-Moyal equation makes it poss
to study the effect of higher-order dispersive terms on
modulational instability.

In order to investigate the stability of the general syst
to small perturbations on a partially coherent backgrou
solution, we assume the initial Wigner distribution functio
to be r(t,x,p)5r0(p)1r1exp@i(Kx2Vt)#. The background
distributionr0 corresponds to a plane wave with a random
varying phase. Including third- as well as fourth-order d
persion effects, the dispersion relation for the small per
bationr1 can be obtained from the linearized Wigner-Moy
equation as

15
2k

ub2uKE2`

`

dp
r0~p1K/2!2r0~p2K/2!

@p2V/~b2K !1H~p!#
, ~21!

whereH(p)5(b3p22K2b3/241b4p3/61K2b4p/24)/b2 is
the correction term due to the presence of the higher-o
dispersion,b3 andb4.

Assumingr0 in Eq. ~21! to have a Lorentzian shape,

r0~p!5
c0

2

p

p0

p21p0
2

, ~22!

the solution of the dispersion relation for the perturbationr1
to second dispersion order, i.e., forH(p)50 cf. Ref. @4# is

V0

ub2uK
5

iK

2 S 4kc0
2

b2K2
21D 1/2

2 i ,p0 , ~23!
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where we have assumed thatkb2.0, i.e., the case of
anomalous second-order dispersion. The choice of a Lor
zian rather than a Gaussian shape of the background d
bution,r0, allows an exact analytical integration of Eq.~21!.

Since the correction terms are small, the changes in
lowest-order dispersion relation will also be small and t
instability growth can be obtained perturbatively asV5V0
1DV, whereuDVu!V0. It is then straightforward to obtain
expressions forDV due to contributions from the third- an
fourth-order dispersion.

A. Instability growth correction DV due to third-order
dispersion; b3Å0, b4Æ0

With b4 equal to zero, the expression forDV becomes
purely real,

DV

ub2uK
5

b3

ub2u F 5

24
K22p0

22
p0~K2b222kc0

2!

Kub2uS 4kc0
2

b2K2
21D 1/2G .

~24!

This result implies that third-order dispersion does not aff
the instability growth rate, but only leads to a shift of the re
frequency of the perturbations. In particular, in the smallK
limit when K!min(p0,Kc), whereKc52c0Ak/b2, one ob-
tains

DV5b3KS 5

24
K22p0

22sgn~b2!
p0Kc

2 D . ~25!

It is seen that the frequency shift may be positive or nega
depending on the relative signs ofb2 andb3 as well as on
the relative magnitude ofK, p0, andKc .

B. Instability growth correction DV due to fourth-order
dispersion; b4Å0, b3Æ0

Here, the third-order dispersion is assumed to vanish
the dominating correction term is thenb4. In this caseDV is
an imaginary quantity, contributing to instability growth o
alternatively damping. Explicitly written out, the fourth
order contribution becomes

DV

ub2uK
52 i

b4

48ub2u

3F 5K2p028p0
31

2~K226p0
2!~K2b222kc0

2!

Kub2uS 4kc0
2

b2K2
21D 1/2 G .

~26!

We note that even in the coherent limit@i.e., whenp050]
the fourth-order dispersion term affects the instability grow
in a nontrivial manner. Whenp050, Eq. ~26! reduces to
2-4
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DV

ub2uK
52 i

b4

24b2

K~K22Kc
2/2!

AKc
2

K2
21

. ~27!

This implies that the correction term can either increase
decrease the growth rate depending on the relative sign
b2 andb4, but also depending on whether the wave num
K is larger or smaller thanKc /A2, the wave number corre
sponding to the maximum growth rate of the modulatio
instability.

The situation becomes even more complex when the
tial coherence is taken into account. Consider again
small-K limit where K!min(p0,Kc). The change in the
growth rate then becomes

DV

ub2uK
52 i

b4

24ub2u @3 sgn~b2!Kc24p0#. ~28!

Again the correction term tends to either enhance or supp
the instability, depending not only on the relative signs
b2 and b4, but also on the relative magnitude of th
critical wave numberKc , as compared to the degree of c
herence as expressed byp0. As an example we note that
b2 and b4 are positive, the correction term increases
growth rate whenp0.3Kc/4, but decreases it in the opposi
limit.
e-
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V. CONCLUSIONS

To summarize, the aim of this paper is to investigate
combined action of partial incoherence and higher-order
persion on pulse broadening and on the modulational in
bility of a constant background field. We have derived a g
eralized equation for the Wigner distribution function th
takes into account arbitrary order of dispersion and a gen
form of nonlinearity. Based on the moments of the distrib
tion, which involve arbitrary dispersive order, general wa
form, and coherence properties of the light, it is shown t
partial incoherence enhances the pulse broadening du
linear pulse propagation. It is found that the classical expr
sions for dispersive pulse broadening can still be used, w
still including effects of partial incoherence, if a new param
eter b̄n is introduced characterizing the effective dispersio
i.e., the dispersion enhanced by the presence of partial in
herence. The analysis also shows, that third-order disper
may be quenched by a suitable combination of second-
fourth-order dispersions. Regarding the influence of high
order dispersion on the modulational instability, the resu
indicate that the odd dispersion terms do not affect
growth of the modulational instability that arises in the pre
ence of the second-order dispersion. However, fourth-or
dispersion does affect the instability growth. Depending
the relative signs ofb2 andb4, the relative magnitude of the
critical instability wave numberKc and the width of the co-
herence spectrum,p0, higher-order dispersion may either e
hance or weaken the instability growth.
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