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Influence of higher-order dispersion on modulational instability and pulse broadening
of partially incoherent light

L. Helczynski¥ M. Lisak, and D. Anderson
Department of Electromagnetics, Chalmers University of Technology, SE-412t66d&p Sweden
(Received 3 July 2002; published 7 February 2003

The Wigner-Moyal equation for the Wigner distribution of a partially incoherent optical wave field propa-
gating in dispersive and nonlinear media has been generalized to include the effects of both arbitrary order of
dispersion and arbitrary nonlinearity. The theory predicts partial incoherence to enhance the pulse broadening
during linear wave pulse propagation. Furthermore, an application of the theory to the modulational instability
of constant amplitude waves shows how higher-order dispersion affects the instability growth rate.

DOI: 10.1103/PhysReVvE.67.026602 PACS nunierd2.25.Kb, 42.65.Sf, 42.65.Jx

[. INTRODUCTION Two applications of the generalized Wigner-Moyal equation
describing the influence of higher-order dispersionfact,

The propagation properties of optical pulses and beams ithird and fourth orderon partially coherent light are ana-
dispersive and nonlinear media have been a subject of intefyzed: in Sec. lll, the dispersive broadening of wave pulses,
sive research for more than 40 years. An inherent assumptiotnd in Sec. IV, the modulational instability of constant am-
in most of these studies is that the optical wave is coherenglitude waves. The result of the first problem provides, as a
However, recently there has been considerable attentio,lgyproduct, a generahzatl_on of a previous classical investiga-
both theoretical and experimental, given to the nonlineafion of Marcuse[10], which analyzes the effect of partial
propagation properties of partially incoherent light, see, e.g.ncoherence in the light source on the subsequent linear
Refs.[1-4]. It has been found that many of the characteristic(third-orde) dispersive broadening of light pulses. Conclu-

effects associated with coherent light propagation remain?Ions are given in Sec. V.

but tend to be suppressed by the partial incoherence. This is,

for instance, the case with the modulational instability of 1. THE GENERALIZED WIGNER-MOYAL EQUATION
continuous waves and the self-focusing collapse of two- . . . . -
dimensional wave beams, where typically the threshold in-(,\“-_rsh)ee CLIJZ?isolﬁarlea%nse-dlmen5|onal nonlinear  Sclmger
tensity for the instability is increased by the partial incoher- q

ence; see, e.g., Ref&-7]. In order to describe the nonlinear

dynamics of partially coherent light, several alternative oy dw o\ 1 6Pw Py
methods of analysis have been u$ée-4]. These methods (E 9K X 2 gK2 ax2
are the mutual coherence function approgth the self-

consistent multimode theoryf2], the coherent density thin the classical hoit d that th i
method[3], and the Wigner distribution function formalism Within the classical approach, it is assumed that the nonlin-
ear medium responds instantaneously to variations in the

[4]. The first three methods have been shown to be equiva:" . . ' X .
lent[8]. The fourth method, which will be used in the presenf}Ight Intensity. .Th's form of the NLS equation can be ylewe(_j
as corresponding to an expansion of the nonlinear dispersion

work, is based on the Wigner distribution function from lati = ok lol?) t d di ; der kand t
guantum mechanics, complemented by a Klimontovich stal®'d 'on“’_.“’( 141 o.seczon ISpersive orderknand to
gwest nonlinear order ify/|. In fact, it can be seen as the

tistical average to incorporate the coherence properties of t o ' ) .
light, see Ref[4] and references therein. The relation be- owest nontrivial expansion of the general evolution equation

tween this method and the other three has not been clear.

However, we have recently showi®] that the Wigner (LX) ,1 9

method is completely equivalent to the mutual coherence I—— =L | ] T ox) Y%, 2

function approach, a result which also demonstrates the con-

sistency of all four methods mentioned above.

In the present work we genera”ze the previous|y formu.Where theL Operator consists of a linear diSperSion part and

lated Wigner formalisnj4] to arbitrary dispersive order. In @ nonlinear intensity dependent part, viz.,

particular, in Sec. Il, we derive the appropriate Wigner-

Moyal equation determining the evolution of the Wigner dis- 15 14

tribution function in the presence of a nonlinearity, which is L( | |2~ —) ELL<__ _) + L (|2, 3

an arbitrary function of the wave intensity, and which also | X [ dX

includes a full expansion of the linear dispersion operator.
The linear dispersion operatdr, corresponds to a Taylor
expansion ofw= w(k,0) around the carrier wave number

*Electronic address: lukas@elmagn.chalmers.se and can be written in compact form as follows:

+|yPp=0. (1)
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LL(i ox i ax) _w(k)eXp<aki &x)’ " 2x T TR
149

4
where arrows indicate the direction in which the derivatives
within the operator act. The nonlinear operator is a genera.|.
function of the wave intensity. When the effect of partial
coherence is included in the analysis, the medium cann
respond on théassumegshort time scale of the stochastic

1 0"w
n=1 Nt K"

_ - - i£(q—p)
5 aq,p+ > &X) p(t,x,p)e ]dpdé- 8

he only ¢ dependence is now within the exponential and
integration over this variable results in a shifted delta func-
c{on, 8(g—p), which makes the second integration trivial.

variations of the light field and will only experience the sta-The result is

tistical average of the intensity denotéd)|?), cf. Ref.[4]. L 1

Thus, the nonlinear operator can be written as (7_”:2 im LIt x——i D+ = i (tx.p) ©
at ’ 2| ap’ 2| IX pLLX, .

L (t,x)=G((|g(t,x)[2)), (5)

Finally, a Taylor series expansion of ttheoperator around

_ ) _ the two variablex andp completes the derivation and gives
which to lowest order reduces to the Kerr nonlinearityne generalized Wigner-Moyal equation:

G(x)=— kX. In this work we use the approach based on the

Wigner-Moyal formalism. A general review of the applica- i35 55

tion of the Wigner distribution function to partially coherent °_ 2 Im[ L(t,x,p)exp{—( _____ ) p} )

light propagation is given in Ref4]. This method is based ot 2\dxdp dp Ix

on the Wigner distribution functiop(t,x,p) that in a con- (10)

venient way introduces the deterministic as well as the sto-

chastic properties of the wave through the definition In the case when the operatbris defined according to

Egs.(3)—(5), the Wigner-Moyal equation becomes

1 [+> . - < -
_ = ipé/ 1 x + _ . J J 1/ 0 4
p(txp = o | ey ok et x— 812)de _p+2wexp(_p)sir{_<__) ,
ot ok 2\ dp ax
(6)

NP s |10 d
Equation(6) implies thatp(t,x,p) and the mutual coherence —2G({|]*))sin 5\ 7% 7p p=0. (11

function (* (t,x+ &/2)(t,x— £/2)) are a Fourier pair, and P

consequently, The averaged intensit{{ /%) is expressed through E¢7)

1 s taken in the same point, i.e.,
(P (LX) (X)) = Ef_ e Pép(t,x,p)dp,  (7) 1 (ie
<|¢|2>=§J7m p(t,x,p)dp. (12)
where for simplicity we introduce the notatioti=x+ &/2,
X' =x—§&/2, or equivalentlyx=(x"+x")/2, £&=x"—x". The  As is well known, the NLS equation, E€1), with suitably
procedure for obtaining a transport equation for the Wignethosen evolution variable, is often used to analyze the propa-
distribution [given an equation for the wave amplitude, gation of optical pulses as well as beams. In the generaliza-
i(t,x)] has been discussed in Refd1,12, but for an ad-  tjon of the linear operator part of the NLS equation, as given
aptation to the present problem and for easy reference wgy Eq. (4), the coefficientsi"w/dk" are determined by the
give the main steps of the derivation. Using EB), it is  dispersive or diffractive properties of the medium, respec-
possible to rewrite the time derivative of the coherence funCtive|y_ The second-order term in the Operatq)_rcorresponds
tion and in this way obtain an equation for the Wigner func-to the first dispersive order or paraxial approximation, which
tion p(t,x,p). For this purpose it is convenient to use theis a standard approximation in investigations of pulse and

relations beam dynamics and at the basis of the NLS equation. How-
ever, in situations where the pulse length or the pulse width

9 19 o9 o9 19 o 9 becomes sufficiently small, these approximations are not suf-
—=z—=-—, —=z—+—, and ———ip. ici i i i )
29X 9E a0 29X 9% agﬂ p ficient and the expansions must be carried to higher order

The importance of higher-order dispersive or diffractive ef-
fects has attracted significant interest over the years, see, e.g.,
We multiply the correspondingly rewritten Eq2) by  Ref.[13] and references therein. We emphasize that although
exp(qé)/(2m) and integrate oveg. This implies that thet  the analysis will be carried out with the “timelike” variable
shifts of thex variables can be expressedéas —id/dq. Itis  t as evolution variable, the analysis is equally applicable to
instructive to write out the corresponding intermediate resultdiffraction of beams in nonlinear and noninstantaneous me-
which is dia.
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I1l. NONLINEAR AND DISPERSIVE PULSE BROADENING terizes the partial coherence of the beam as expressed by its

Solutions of the Wigner-Moyal equation are difficult to gtgﬁggigtnelaitlgn functiorR(¢), which we also assume to be

obtain analytically in the general case. However, important

information aboutp(t,x,p) is contained in the moments of  (expfi[ A(x+ £/2) — O(x— £/2) ]} =R(&) = exp( — £2/b2?).
the distribution, defined with respect to different weight et b P (17)

functionsw(x,p) as follows:
This implies that the initial Wigner distribution is given by

f f w(x,p)p dxdp

f f pdxdp
where A2=1-+4a?/b?. We now restrict the analysis to in-

In particular, the moments correspondingviéx,p) =x and cll_Jde terms up to and i_ncluding_fourth—order d@spersion. I_:or
w(x,p)=x2 have a direct physical meaning, cf. Rg14]. this case, the constaoi is zero, since the pu!se IS symmetric
The moment(x)) defines the mean position and the moment@roundit=0 and for the constart,, we obtain
{x®) determines the width of the beam. The rms widtlof 2.2 2 4 206
a wave pulse/beam is determined by BoA +('B3+2'8234)A 5 Bia
a* 43° 48 a8

a?= ()= (). (19
where we have introduced the notatigp=¢"w/Jk". This
The Wigner-Moyal equation can be used to obtain informaresult reduces to that obtained in REf0] in the case where
tion about the evolution of the moments. In particular, theg,=0 and to the result of Ref15] in the fully coherent
second-order time derivatives of the two momex{ts) and  case, wheb— andA equals unity.
(x®), yield The final expression for the pulse width evolution can
conveniently be written in the form

a
(w(x,p))= (13) p(O,x,p)=lomexp{—[x2/a2+ p*a’/A?]}, (19

C2: y (19)

d2{(x)) o p"? Jw dG L
a2 nzz(n—Z)! KD IX (19 a(t) 2 1+IZ<E+(E§+2B2B4)+E§)
a(0) a’ 438 48 a8/ |’
and (20)
d2({(x?)) opl 9w’ where we have introduced th&,= 8,A""%, which charac-
a2 :2<< ( zzl (n—1)! %) >> terizes a fictitious effective dispersion, enhanced by the pres-

ence of the partial coherence. This result implies a simple
o n-2  on way of accounting for the effect of the partial coherence: in
p Iw G . . . :
— << >> (16)  the previously derived expression for the pulse broadening,
the ordinary dispersion coefficients are replaced by the effec-
tive ones, the coherent ones being multiplied by the enhance-
Consider first linear propagation, i.€&5=0. In this case ment factorA, which is determined by the ratio of the rela-
the acceleration of the mean position vanishes, irrespectivgye widths of the pulse amplitude and the correlation
of dispersive order, anx)) is simply given by the linear function. For long coherence lengths, this ratio goes to zero
expression{(x))=Xo+vt, where the initial positiorx, and  and the enhancement factor approaches unity, i.e., the coher-
the mean velocity are given by the initial Wigner distribu-  ent result is regained.
tion function p(0x,p), i.e., by the properties of the initial ~ The presence of higher-order dispersive terms tends to
pulse. Furthermore, it is straightforward to show that theenhance the broadening of coherent wave pul$8k(note,
second time derivative ofx*) is constant and that conse- however, that if3,84<0, fourth-order dispersion actually
quently the rms width must vary as a parabola in time, i.e.decreases the total dispersiohe partial coherence in-
02=cr§(1+clt+czt2) with the coefficients again being de- creases the pulse broadening even further.
termined by the initial wave form. In the coherent case, this In the case of nonlinear propagation, the rms width will
result(to arbitrary dispersive ordewas derived in Ref.15].  vary in a nonmonotonous and nontrivial manner as a result
To third dispersive order and for a partially coherent lightof the interplay between linear and nonlinear effects as ex-
source with Gaussian correlation function and Gaussiapressed by the first and second terms, respectively, on the
wave form, the corresponding result was derived by Marcuseéight hand side of Eq(16). This variation is difficult to de-
[10]. The present analysis generalizes these results to arbéeribe in simple analytical terms even in the fully coherent
trary dispersive order and to arbitrary properties of the wavease with only second-order dispersion and Wa{x)~ X,
form and the coherence properties of the light. although approximate solutions have been obtained for this
In order to be explicit, we consider the case when thecase[16]. The main difficulty stems from the fact that in the
initial profile is a Gaussian of the formy(0x) nonlinear case, the right hand side of Etj6) is no longer
= l,exgx?2a+i6(x)]. The phase functiom(x) charac- constant and that consequently the moment equations cannot

& (n=2)! gkn X
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be closed. However, in nonlinear situations, the definition ofwhere we have assumed thaj3,>0, i.e., the case of

pulse width in terms of the rms value may sometimes beanomalous second-order dispersion. The choice of a Lorent-

ambiguous. As an example of this we emphasize that fozian rather than a Gaussian shape of the background distri-

pulse propagation governed by the classical NLS equatiorution, py, allows an exact analytical integration of Eg1).

the rms pulse width will increase towards infinity for initially ~ Since the correction terms are small, the changes in the

nonsoliton pulses due to dispersive radiation being shed offowest-order dispersion relation will also be small and the

This feature exists in spite of the fact that asymptoticallyinstability growth can be obtained perturbatively @s- (),

only stationary pulses in the form of solitons appear. +AQ, where|AQ|<Q,. Itis then straightforward to obtain
On the other hand, in the two-dimensional case with expressions foAQ due to contributions from the third- and

=2 (describing classical nonlinear diffraction of coherentfourth-order dispersion.

light beams, the corresponding right hand side of E#6) is

indeed constant, the rms width of the beam is still a parabola

in time and the famous virial theorem describing the possi-

bility of beam collapse can be formulated. A generalization

of this situation to include effects of partial beam coherence With B, equal to zero, the expression fAf) becomes

has recently been investigated by several authors, e.g., Refsurely real,

[6,7]. The results show the same qualitative picture as dis-

A. Instability growth correction AQ due to third-order
dispersion; B8;#0, B,=0

cussed above; the partial incoherence tends to increase the AQ Bz| S5 , po(KZ,BZ—Zmpg)
diffraction effect, and thus a higher beam power is needed to [8,]K = @ 2_4K ~Po— 4k |-
cause self-focusing collapse. K|,6’2|( 2 -1

B2K

IV. INFLUENCE OF HIGHER-ORDER DISPERSION ON (24)

THE MODULATIONAL INSTABILITY
] . ) _This result implies that third-order dispersion does not affect
_ It has been shown that the classical modulational instabilgye jnstapility growth rate, but only leads to a shift of the real
ity of a monochromatic stationary solution of the one-fequency of the perturbations. In particular, in the sriall-

dimensional NLS equation is reduced and may even be 1%mit when K <min(on.K.). whereK .= 2dxl 8. one ob-
tally suppressed for partially coherent light,5]. The : (Po.Ko), o= 2¥oVxl Bz,

presently extended Wigner-Moyal equation makes it possible
to study the effect of higher-order dispersive terms on the
modulational instability.

In order to investigate the stability of the general system
to small perturbations on a partially coherent background
solution, we assume the initial Wigner distribution function
to be p(t,X,p) = po(p) + p1exdi(Kx—Qt)]. The background
distribution p, corresponds to a plane wave with a randomly
varying phase. Including third- as well as fourth-order dis-
persion effects, the dispersion relation for the small pertur-
bationp, can be obtained from the linearized Wigner-Moyal  B. Instability growth correction AQ due to fourth-order
equation as dispersion; B,#0, B;=0

5 poK
AQ=BK| 5, K2 = pi=sgrB) 5| (29

It is seen that the frequency shift may be positive or negative
depending on the relative signs B and 85 as well as on
the relative magnitude A, py, andK..

Here, the third-order dispersion is assumed to vanish and
1= X fm ppo(p+ K12)~ po(P—K/2) (21)  the dominating correction term is theh. In this caseA() is
|B2lKJ - [p—=Q/(BK)+H(p)] an imaginary quantity, contributing to instability growth or
alternatively damping. Explicitly written out, the fourth-
whereH(p) = (B3p®— K?B3/24+ B,p%16+K?B,pl24)IB, is  order contribution becomes
the correction term due to the presence of the higher-orderAQ

dispersion,3; and 3. _ Ba
Assumingp, in Eq. (21) to have a Lorentzian shape, | B2|K 48 B,
2(K2—6pg)(K?B,— 2k
¥ Po x| 5K2po—8p3+ (K0P (R P, 1'72%)
po(P)=— 5>, (22) Ay
T p’+p, K| B, -1
BoK?
the solution of the dispersion relation for the perturbafen (26)

to second dispersion order, i.e., fdi(p) =0 cf. Ref.[4] is

(23 the fourth-order dispersion term affects the instability growth
in a nontrivial manner. Whepy=0, Eq.(26) reduces to

Q, iK (4,«//3

112 We note that even in the coherent linjite., whenp,=0]
=5 | a1 b,
|B2lK 2 | K2 )
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K = 24 ' (27 To summarize, the aim of this paper is to investigate the
|82l 52 K2 , . . . \

°_4 combined action of partial incoherence and higher-order dis-

E_ persion on pulse broadening and on the modulational insta-

bility of a constant background field. We have derived a gen-
This imolies that th tion t ither | eralized equation for the Wigner distribution function that
IS iImplies hat the correction term can €ither INCrease of,y o5 jnto account arbitrary order of dispersion and a general
decrease the growth rate d_ependmg on the relative signs ®rm of nonlinearity. Based on the moments of the distribu-
B andp,, but also depending on whether the wave numbetﬁon, which involve arbitrary dispersive order, general wave

K is larger or smaller thai/\2, the wave number corre- form, and coherence properties of the light, it is shown that

sponding to the maximum growth rate of the modulationalya i incoherence enhances the pulse broadening during
instability. linear pulse propagation. It is found that the classical expres-
_ The situation becomes even more complex when the pakjons for dispersive pulse broadening can still be used, while
tial coherence is taken into account. Consider again theyj)| including effects of partial incoherence, if a new param-

smallK limit where K=<min(po,K). The change in the eter B, is introduced characterizing the effective dispersion,
growth rate then becomes ) . . S
i.e., the dispersion enhanced by the presence of partial inco-

herence. The analysis also shows, that third-order dispersion
[3 g1 B2)Ke—4pq]. (29 may be quenched by a suitable combination of second- and
| fourth-order dispersions. Regarding the influence of higher-

order dispersion on the modulational instability, the results
Again the correction term tends to either enhance or suppressdicate that the odd dispersion terms do not affect the
the instability, depending not only on the relative signs ofgrowth of the modulational instability that arises in the pres-
B, and B4, but also on the relative magnitude of the ence of the second-order dispersion. However, fourth-order
critical wave numbeK,, as compared to the degree of co- dispersion does affect the instability growth. Depending on
herence as expressed py. As an example we note that if the relative signs 0B, and 3,, the relative magnitude of the
B, and B, are positive, the correction term increases thecritical instability wave numbeK. and the width of the co-
growth rate whemy>3K_/4, but decreases it in the opposite herence spectrunp,, higher-order dispersion may either en-

AQ By
18K~ ' 24,

limit. hance or weaken the instability growth.
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